Skip to main content
Version: 3.4.0

Vector Operations API

Overview

The Vector Operations API in Icicle provides a set of functions for performing element-wise and scalar-vector operations on vectors, matrix operations, and miscellaneous operations like bit-reversal and slicing. These operations can be performed on the host or device, with support for asynchronous execution.

VecOpsConfig

The VecOpsConfig struct is a configuration object used to specify parameters for vector operations.

Fields

  • stream: icicleStreamHandle: Specifies the CUDA stream for asynchronous execution. If nullptr, the default stream is used.
  • is_a_on_device: bool: Indicates whether the first input vector (a) is already on the device. If false, the vector will be copied from the host to the device.
  • is_b_on_device: bool: Indicates whether the second input vector (b) is already on the device. If false, the vector will be copied from the host to the device. This field is optional.
  • is_result_on_device: bool: Indicates whether the result should be stored on the device. If false, the result will be transferred back to the host.
  • is_async: bool: Specifies whether the vector operation should be performed asynchronously. When true, the operation will not block the CPU, allowing other operations to proceed concurrently. Asynchronous execution requires careful synchronization to ensure data integrity.
  • batch_size: int: Number of vectors (or operations) to process in a batch. Each vector operation will be performed independently on each batch element.
  • columns_batch: bool: True if the batched vectors are stored as columns in a 2D array (i.e., the vectors are strided in memory as columns of a matrix). If false, the batched vectors are stored contiguously in memory (e.g., as rows or in a flat array).
  • ext: ConfigExtension*: Backend-specific extensions.

Default Configuration

static VecOpsConfig default_vec_ops_config() {
VecOpsConfig config = {
nullptr, // stream
false, // is_a_on_device
false, // is_b_on_device
false, // is_result_on_device
false, // is_async
1, // batch_size
false, // columns_batch
nullptr // ext
};
return config;
}

Element-wise Operations

These functions perform element-wise operations on two input vectors a and b. If VecOpsConfig specifies a batch_size greater than one, the operations are performed on multiple pairs of vectors simultaneously, producing corresponding output vectors.

vector_add

Adds two vectors element-wise.

template <typename T>
eIcicleError vector_add(const T* vec_a, const T* vec_b, uint64_t size, const VecOpsConfig& config, T* output);

vector_sub

Subtracts vector b from vector a element-wise.

template <typename T>
eIcicleError vector_sub(const T* vec_a, const T* vec_b, uint64_t size, const VecOpsConfig& config, T* output);

vector_mul

Multiplies two vectors element-wise.

template <typename T>
eIcicleError vector_mul(const T* vec_a, const T* vec_b, uint64_t size, const VecOpsConfig& config, T* output);

vector_div

Divides vector a by vector b element-wise.

template <typename T>
eIcicleError vector_div(const T* vec_a, const T* vec_b, uint64_t size, const VecOpsConfig& config, T* output);

execute_program

Execute a user-defined lambda function with arbitrary number of input and output variables.

template <typename T>
eIcicleError
execute_program(std::vector<T*>& data, const Program<T>& program, uint64_t size, const VecOpsConfig& config);

is_result_on_device of VecOpsConfig is not used here.

For more details see program.

vector_accumulate

Adds vector b to a, inplace.

template <typename T>
eIcicleError vector_accumulate(T* vec_a, const T* vec_b, uint64_t size, const VecOpsConfig& config);

convert_montogomery

Convert a vector of field elements to/from montgomery form.

template <typename T>
eIcicleError convert_montgomery(const T* input, uint64_t size, bool is_into, const VecOpsConfig& config, T* output);

Reduction operations

These functions perform reduction operations on vectors. If VecOpsConfig specifies a batch_size greater than one, the operations are performed on multiple vectors simultaneously, producing corresponding output values. The storage arrangement of batched vectors is determined by the columns_batch field in the VecOpsConfig.

vector_sum

Computes the sum of all elements in each vector in a batch.

template <typename T>
eIcicleError vector_sum(const T* vec_a, uint64_t size, const VecOpsConfig& config, T* output);

vector_product

Computes the product of all elements in each vector in a batch.

template <typename T>
eIcicleError vector_product(const T* vec_a, uint64_t size, const VecOpsConfig& config, T* output);

Scalar-Vector Operations

These functions apply a scalar operation to each element of a vector. If VecOpsConfig specifies a batch_size greater than one, the operations are performed on multiple vector-scalar pairs simultaneously, producing corresponding output vectors.

scalar_add_vec / scalar_sub_vec

Adds a scalar to each element of a vector.

template <typename T>
eIcicleError scalar_add_vec(const T* scalar_a, const T* vec_b, uint64_t size, const VecOpsConfig& config, T* output);

scalar_sub_vec

Subtract each element of a vector from a scalar scalar-vec.

template <typename T>
eIcicleError scalar_sub_vec(const T* scalar_a, const T* vec_b, uint64_t size, const VecOpsConfig& config, T* output);

scalar_mul_vec

Multiplies each element of a vector by a scalar.

template <typename T>
eIcicleError scalar_mul_vec(const T* scalar_a, const T* vec_b, uint64_t size, const VecOpsConfig& config, T* output);

Matrix Operations

These functions perform operations on matrices. If VecOpsConfig specifies a batch_size greater than one, the operations are performed on multiple matrices simultaneously, producing corresponding output matrices.

matrix_transpose

Transposes a matrix.

template <typename T>
eIcicleError matrix_transpose(const T* mat_in, uint32_t nof_rows, uint32_t nof_cols, const VecOpsConfig& config, T* mat_out);

Miscellaneous Operations

bit_reverse

Reorders the vector elements based on a bit-reversal pattern. If VecOpsConfig specifies a batch_size greater than one, the operation is performed on multiple vectors simultaneously.

template <typename T>
eIcicleError bit_reverse(const T* vec_in, uint64_t size, const VecOpsConfig& config, T* vec_out);

slice

Extracts a slice from a vector. If VecOpsConfig specifies a batch_size greater than one, the operation is performed on multiple vectors simultaneously, producing corresponding output vectors.

template <typename T>
eIcicleError slice(const T* vec_in, uint64_t offset, uint64_t stride, uint64_t size_in, uint64_t size_out, const VecOpsConfig& config, T* vec_out);

highest_non_zero_idx

Finds the highest non-zero index in a vector. If VecOpsConfig specifies a batch_size greater than one, the operation is performed on multiple vectors simultaneously.

template <typename T>
eIcicleError highest_non_zero_idx(const T* vec_in, uint64_t size, const VecOpsConfig& config, int64_t* out_idx);

polynomial_eval

Evaluates a polynomial at given domain points. If VecOpsConfig specifies a batch_size greater than one, the operation is performed on multiple vectors simultaneously.

template <typename T>
eIcicleError polynomial_eval(const T* coeffs, uint64_t coeffs_size, const T* domain, uint64_t domain_size, const VecOpsConfig& config, T* evals /*OUT*/);

polynomial_division

Divides two polynomials. If VecOpsConfig specifies a batch_size greater than one, the operation is performed on multiple vectors simultaneously.

template <typename T>
eIcicleError polynomial_division(const T* numerator, int64_t numerator_deg, const T* denumerator, int64_t denumerator_deg, const VecOpsConfig& config, T* q_out /*OUT*/, uint64_t q_size, T* r_out /*OUT*/, uint64_t r_size);

Rust and Go bindings