Icicle Rust Usage Guide
Overviewβ
This guide covers the usage of ICICLEβs Rust API, including device management, memory operations, data transfer, synchronization, and compute APIs.
Build the Rust Application and Executeβ
To successfully build and execute the Rust application using ICICLE, you need to define the ICICLE dependencies in your Cargo.toml file:
[dependencies]
icicle-runtime = { git = "https://github.com/ingonyama-zk/icicle.git", branch="main" }
icicle-core = { git = "https://github.com/ingonyama-zk/icicle.git", branch="main" }
icicle-babybear = { git = "https://github.com/ingonyama-zk/icicle.git", branch="main" }
# add other ICICLE crates here as needed
Once the dependencies are defined, you can build and run your application using the following command:
cargo run --release
This will compile your Rust application with optimizations and execute it.
note
The icicle-runtime crate is used to load backends, select a device, and interact with the device in an abstract way when managing memory, streams, and other resources, as explained in this guide.
Device Managementβ
Loading a Backendβ
The backend can be loaded from a specific path or from an environment variable. This is essential for setting up the computing environment.
use icicle_runtime::runtime;
runtime::load_backend_from_env_or_default().unwrap();
// or load from custom install dir
runtime::load_backend("/path/to/backend/installdir").unwrap();
Setting and Getting Active Deviceβ
You can set the active device for the current thread and retrieve it when needed:
use icicle_runtime::Device;
let device = Device::new("CUDA", 0); // or other
icicle_runtime::set_device(&device).unwrap();
let active_device = icicle_runtime::get_active_device().unwrap();
Querying Device Informationβ
Retrieve the number of available devices and check if a pointer is allocated on the host or on the active device:
let device_count = icicle_runtime::get_device_count().unwrap();
Memory Managementβ
Allocating and Freeing Memoryβ
Memory can be allocated on the active device using the DeviceVec
API. This memory allocation is flexible, as it supports allocation on any device, including the CPU if the CPU backend is used.
use icicle_runtime::memory::DeviceVec;
// Allocate 1024 elements on the device
let mut device_memory: DeviceVec<u8> = DeviceVec::<u8>::device_malloc(1024).unwrap();
The memory is released when the DeviceVec
object is dropped.
Asynchronous Memory Operationsβ
Asynchronous memory operations can be performed using streams. This allows for non-blocking execution, with memory allocation and deallocation occurring asynchronously.
use icicle_runtime::stream::IcicleStream;
use icicle_runtime::memory::DeviceVec;
let mut stream = IcicleStream::create().unwrap(); // mutability is for the destroy() method
// Allocate 1024 elements asynchronously on the device
let mut device_memory: DeviceVec<u8> = DeviceVec::<u8>::device_malloc_async(1024, &stream).unwrap();
// dispatch additional copy, compute etc. ops to the stream
// Synchronize the stream to ensure all operations are complete
stream.synchronize().unwrap();
stream.destroy().unwrap(); //
note
Streams need be explicitly destroyed before being dropped.
Querying Available Memoryβ
You can retrieve the total and available memory on the active device using the get_available_memory
function.
use icicle_runtime::memory::get_available_memory;
// Retrieve total and available memory on the active device
let (total_memory, available_memory) = get_available_memory().unwrap();
println!("Total memory: {}", total_memory);
println!("Available memory: {}", available_memory);
This function returns a tuple containing the total memory and the currently available memory on the device. It is essential for managing and optimizing resource usage in your applications.
Data Transferβ
Copying Dataβ
Data can be copied between the host and device, or between devices. The location of the memory is handled by the HostOrDeviceSlice
and DeviceSlice
traits:
use icicle_runtime::memory::{DeviceVec, HostSlice};
// Copy data from host to device
let input = vec![1, 2, 3, 4];
let mut d_mem = DeviceVec::<u32>::device_malloc(input.len()).unwrap();
d_mem.copy_from_host(HostSlice::from_slice(&input)).unwrap();
// OR
d_mem.copy_from_host_async(HostSlice::from_slice(&input, &stream)).unwrap();
// Copy data back from device to host
let mut output = vec![0; input.len()];
d_mem.copy_to_host(HostSlice::from_mut_slice(&mut output)).unwrap();
// OR
d_mem.copy_to_host_async(HostSlice::from_mut_slice(&mut output, &stream)).unwrap();
Stream Managementβ
Creating and Destroying Streamsβ
Streams in Icicle are used to manage asynchronous operations, ensuring that computations can run in parallel without blocking the CPU thread:
use icicle_runtime::stream::IcicleStream;
// Create a stream
let mut stream = IcicleStream::create().unwrap();
// Destroy the stream
stream.destroy().unwrap();
Synchronizationβ
Synchronizing Streams and Devicesβ
Synchronization ensures that all previous operations on a stream or device are completed before moving on to the next task. This is crucial when coordinating between multiple dependent operations:
use icicle_runtime::stream::IcicleStream;
// Synchronize the stream
stream.synchronize().unwrap();
// Synchronize the device
icicle_runtime::device_synchronize().unwrap();
These functions ensure that your operations are properly ordered and completed before the program proceeds, which is critical in parallel computing environments.
Device Propertiesβ
Checking Device Availabilityβ
Check if a specific device is available and retrieve a list of registered devices:
use icicle_runtime::Device;
let cuda_device = Device::new("CUDA", 0);
if icicle_runtime::is_device_available(&cuda_device) {
println!("CUDA device is available.");
} else {
println!("CUDA device is not available.");
}
let registered_devices = icicle_runtime::get_registered_devices().unwrap();
println!("Registered devices: {:?}", registered_devices);
Querying Device Propertiesβ
Retrieve properties of the active device to understand its capabilities and configurations:
use icicle_runtime::Device;
let cuda_device = Device::new("CUDA", 0);
if icicle_runtime::is_device_available(&cuda_device) {
icicle_runtime::set_device(&cuda_device);
let device_props = icicle_runtime::get_device_properties().unwrap();
println!("Device using host memory: {}", device_props.using_host_memory);
}
These functions allow you to query device capabilities and ensure that your application is running on the appropriate hardware.
Compute APIsβ
Multi-Scalar Multiplication (MSM) Exampleβ
Icicle provides high-performance compute APIs such as Multi-Scalar Multiplication (MSM) for cryptographic operations. Here's a simple example of how to use the MSM API in Rust.
// Using bls12-377 curve
use icicle_bls12_377::curve::{CurveCfg, G1Projective, ScalarCfg};
use icicle_core::{curve::Curve, msm, msm::MSMConfig, traits::GenerateRandom};
use icicle_runtime::{device::Device, memory::HostSlice};
fn main() {
// Load backend and set device
let _ = icicle_runtime::runtime::load_backend_from_env_or_default();
let cuda_device = Device::new("CUDA", 0);
if icicle_runtime::is_device_available(&cuda_device) {
icicle_runtime::set_device(&cuda_device).unwrap();
}
let size = 1024;
// Randomize inputs
let points = CurveCfg::generate_random_affine_points(size);
let scalars = ScalarCfg::generate_random(size);
let mut msm_results = vec![G1Projective::zero(); 1];
msm::msm(
HostSlice::from_slice(&scalars),
HostSlice::from_slice(&points),
&MSMConfig::default(),
HostSlice::from_mut_slice(&mut msm_results[..]),
)
.unwrap();
println!("MSM result = {:?}", msm_results);
}