Skip to main content
Version: 3.2.0

Vector Operations

Overview

Icicle exposes a number of vector operations which a user can use:

  • The VecOps API provides efficient vector operations such as addition, subtraction, and multiplication, supporting both single and batched operations.
  • MatrixTranspose API allows a user to perform a transpose on a vector representation of a matrix, with support for batched transpositions.

VecOps API Documentation

Example

Vector addition

package main

import (
"github.com/ingonyama-zk/icicle/v3/wrappers/golang/core"
"github.com/ingonyama-zk/icicle/v3/wrappers/golang/curves/bn254"
"github.com/ingonyama-zk/icicle/v3/wrappers/golang/curves/bn254/vecOps"
"github.com/ingonyama-zk/icicle/v3/wrappers/golang/runtime"
)

func main() {
testSize := 1 << 12
a := bn254.GenerateScalars(testSize)
b := bn254.GenerateScalars(testSize)
out := make(core.HostSlice[bn254.ScalarField], testSize)
cfg := core.DefaultVecOpsConfig()

// Perform vector multiplication
err := vecOps.VecOp(a, b, out, cfg, core.Add)
if err != runtime.Success {
panic("Vector addition failed")
}
}

Vector Subtraction

package main

import (
"github.com/ingonyama-zk/icicle/v3/wrappers/golang/core"
"github.com/ingonyama-zk/icicle/v3/wrappers/golang/curves/bn254"
"github.com/ingonyama-zk/icicle/v3/wrappers/golang/curves/bn254/vecOps"
"github.com/ingonyama-zk/icicle/v3/wrappers/golang/runtime"
)

func main() {
testSize := 1 << 12
a := bn254.GenerateScalars(testSize)
b := bn254.GenerateScalars(testSize)
out := make(core.HostSlice[bn254.ScalarField], testSize)
cfg := core.DefaultVecOpsConfig()

// Perform vector multiplication
err := vecOps.VecOp(a, b, out, cfg, core.Sub)
if err != runtime.Success {
panic("Vector subtraction failed")
}
}

Vector Multiplication

package main

import (
"github.com/ingonyama-zk/icicle/v3/wrappers/golang/core"
"github.com/ingonyama-zk/icicle/v3/wrappers/golang/curves/bn254"
"github.com/ingonyama-zk/icicle/v3/wrappers/golang/curves/bn254/vecOps"
"github.com/ingonyama-zk/icicle/v3/wrappers/golang/runtime"
)

func main() {
testSize := 1 << 12
a := bn254.GenerateScalars(testSize)
b := bn254.GenerateScalars(testSize)
out := make(core.HostSlice[bn254.ScalarField], testSize)
cfg := core.DefaultVecOpsConfig()

// Perform vector multiplication
err := vecOps.VecOp(a, b, out, cfg, core.Mul)
if err != runtime.Success {
panic("Vector multiplication failed")
}
}

VecOps Method

func VecOp(a, b, out core.HostOrDeviceSlice, config core.VecOpsConfig, op core.VecOps) (ret runtime.EIcicleError)

Parameters

  • a: The first input vector.
  • b: The second input vector.
  • out: The output vector where the result of the operation will be stored.
  • config: A VecOpsConfig object containing various configuration options for the vector operations.
  • op: The operation to perform, specified as one of the constants (Sub, Add, Mul) from the VecOps type.

Return Value

  • EIcicleError: A runtime.EIcicleError value, which will be runtime.Success if the operation was successful, or an error if something went wrong.

VecOpsConfig

The VecOpsConfig structure holds configuration parameters for the vector operations, allowing customization of its behavior.

type VecOpsConfig struct {
StreamHandle runtime.Stream
isAOnDevice bool
isBOnDevice bool
isResultOnDevice bool
IsAsync bool
batch_size int
columns_batch bool
Ext config_extension.ConfigExtensionHandler
}

Fields

  • StreamHandle: Specifies the stream (queue) to use for async execution.
  • isAOnDevice: Indicates if vector a is located on the device.
  • isBOnDevice: Indicates if vector b is located on the device.
  • isResultOnDevice: Specifies where the result vector should be stored (device or host memory).
  • IsAsync: Controls whether the vector operation runs asynchronously.
  • batch_size: Number of vectors (or operations) to process in a batch. Each vector operation will be performed independently on each batch element.
  • columns_batch: true if the batched vectors are stored as columns in a 2D array (i.e., the vectors are strided in memory as columns of a matrix). If false, the batched vectors are stored contiguously in memory (e.g., as rows or in a flat array).
  • Ext: Extended configuration for backend.

Default Configuration

Use DefaultVecOpsConfig to obtain a default configuration, customizable as needed.

func DefaultVecOpsConfig() VecOpsConfig

MatrixTranspose API Documentation

This section describes the functionality of the TransposeMatrix function used for matrix transposition.

The function takes a matrix represented as a 1D slice and transposes it, storing the result in another 1D slice.

If VecOpsConfig specifies a batch_size greater than one, the transposition is performed on multiple matrices simultaneously, producing corresponding transposed matrices. The storage arrangement of batched matrices is determined by the columns_batch field in the VecOpsConfig.

Function

func TransposeMatrix(in, out core.HostOrDeviceSlice, columnSize, rowSize int, config core.VecOpsConfig) runtime.EIcicleError

Parameters

  • in: The input matrix is a core.HostOrDeviceSlice, stored as a 1D slice.
  • out: The output matrix is a core.HostOrDeviceSlice, which will be the transpose of the input matrix, stored as a 1D slice.
  • columnSize: The number of columns in the input matrix.
  • rowSize: The number of rows in the input matrix.
  • config: A VecOpsConfig object containing various configuration options for the vector operations.

Return Value

  • EIcicleError: A runtime.EIcicleError value, which will be runtime.Success if the operation was successful, or an error if something went wrong.

Example Usage

var input = make(core.HostSlice[ScalarField], 20)
var output = make(core.HostSlice[ScalarField], 20)

// Populate the input matrix
// ...

// Get device context
cfg, _ := runtime.GetDefaultDeviceContext()

// Transpose the matrix
err := TransposeMatrix(input, output, 5, 4, cfg)
if err != runtime.Success {
// Handle the error
}

// Use the transposed matrix
// ...

In this example, the TransposeMatrix function is used to transpose a 5x4 matrix stored in a 1D slice. The input and output slices are stored on the host (CPU), and the operation is executed synchronously.